Construction of sub‐micron eccentric Ag@PANI particles by interface and redox potential engineering
Chinese Chemical Letters, ISSN: 1001-8417, Vol: 34, Issue: 10, Page: 108147
2023
- 3Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Benefitting from the tunable heterogeneous interface and electronic interaction, metal-polymer-based hybrid composites have attracted wide attention. It is highly desired to develop advanced synthesis methodology and understand the structure-performance relationship. Herein, with the aniline oligomer as the key enabler, we resolve the inferior dynamics issue in the Ag + -aniline reaction system, and successfully fabricate a sub-micron anisotropic eccentric Ag@polyaniline (PANI) particle (an average size up to 340 nm) at room temperature. We demonstrate the synergy mechanism of polyvinyl pyrrolidone and in-situ generated PANI for modifying the dynamic reaction interface. We further clarify the H + concentration and the surfactant types serve as main descriptors to tune the reaction dynamics. Besides, by applying other aniline oligomers, a series of similar eccentric structures can also be obtained, indicative of the good applicability of our strategy. Such a sub-micron eccentric structure furnishes the Ag@PANI composites with sound performance for microwave absorption, as demonstrated by a minimum reflection loss (RL) value of −35 dB with an effective absorption bandwidth of 3.7 GHz. This study provides an inspiring scope/concept of eccentric microstructure engineering for better meeting the demands in the high-tech military, energy, environment fields, and beyond.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1001841723000190; http://dx.doi.org/10.1016/j.cclet.2023.108147; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85165071464&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1001841723000190; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7571980&internal_id=7571980&from=elsevier; https://dx.doi.org/10.1016/j.cclet.2023.108147
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know