Hydrogen-bonding-driven self-assembly nonporous adaptive crystals for the separation of benzene from BTX and cyclohexane
Chinese Chemical Letters, ISSN: 1001-8417, Vol: 34, Issue: 11, Page: 108304
2023
- 14Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef4
- Captures4
- Readers4
Article Description
Benzene is a volatile organic compound that can seriously harm human health, while it can serve as a precursor to produce chemicals of more complex structures in chemical industry. Capturing benzene using adsorbents is of great importance for human health, when the separation of hydrocarbons including benzene from crude oil was referred to as one of the “seven chemical separations to change the world”. In this work, we reported the efficient and selective separation of benzene from BTX and cyclohexane by hydrogen bonding self-assembly nonporous adaptive crystals AdaOH for the first time under mild and user-friendly conditions. Separation of benzene and cyclohexane (v/v = 1:1) can be achieved by AdaOH with a purity of benzene up to 96.8%. Separation of BTX (v/v; benzene:toluene: o -xylene: m -xylene: p -xylene= 1:1:1:1:1) can be achieved by AdaOH with a purity of benzene increased from 20% to 82.9%. Our results suggest that separation of benzene using the activated AdaOH as a non-porous adaptive crystal for selectively and efficiently capturing benzene can solve the challenge in separation of benzene from other chemicals such as cyclohexane in chemical industry, and can be helpful for removal of benzene that is released from the vehicles to air. The advantages of commercially availability, easy preparation, high separation efficiency and selectivity for benzene might endow this material with enormous potential for practical uses in areas like petrochemical industry.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1001841723001663; http://dx.doi.org/10.1016/j.cclet.2023.108304; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85166743150&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1001841723001663; https://dx.doi.org/10.1016/j.cclet.2023.108304; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7592105&internal_id=7592105&from=elsevier
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know