Advances in carbon nanotube-based gas sensors: Exploring the path to the future
Coordination Chemistry Reviews, ISSN: 0010-8545, Vol: 518, Page: 216049
2024
- 15Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
In the era of the Internet of Things, sensors are pivotal for a smart and interconnected future. Gas sensors, particularly those based on carbon nanotubes (CNTs), emerge as essential tools supporting environmental protection policies with their highly sensitive gas detection capabilities. This review highlights the recent strides in CNTs based gas sensors. It begins with outlining the CNT fundamental traits, establishing the groundworks for explaining their working principles and integrated manufacturing. The discussion proceeds to key parameters for evaluating gas sensor performance. Strengths-Weaknesses-Opportunities-Threats analysis showed that CNTs based gas sensors demonstrate promising potential in various applications, leveraging their exceptional responsiveness, sustainability, and integration capabilities, despite facing challenges in scalability and market competition. The review then delves into the research progress and sensing mechanisms of CNTs based gas sensors in environmental monitoring, industrial safety, and health care, showcasing their exceptional attributes like high sensitivity, fast response, and low power consumption. Finally, the future development of CNTs based gas sensors may focus on enhancing sensing performance, achieving miniaturization, integration and multifunctionality, standardizing measurement processes, as well as utilizing machine learning to improve sensor selectivity and stability. These advances aim to enhance reliability, broaden application scopes, facilitate commercialization, and meet the evolving needs of practical applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0010854524003953; http://dx.doi.org/10.1016/j.ccr.2024.216049; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85197217607&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0010854524003953; https://dx.doi.org/10.1016/j.ccr.2024.216049
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know