Temperature-dependent selective nucleation of single-walled carbon nanotubes from stabilized catalyst nanoparticles
Chemical Engineering Journal, ISSN: 1385-8947, Vol: 431, Page: 133487
2022
- 23Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The utilization of metal nanoparticles supported on oxides substrate as a catalyst for rational single-walled carbon nanotube (SWCNT) growth is hindered by particle coarsening at high synthesis temperature, despite many empirical advances in supported catalyst design. In this study, a newly developed MgO-supported cobalt (Co-MgO) catalyst affords the formation of well-stabilized Co nanoparticles upon reduction, which is attributed to the electronic metal-support interaction and electrostatic stabilization at the Co-MgO interface. The highly stabilized Co nanoparticles led to the predominant growth of (6, 5) SWCNTs at 700 °C by CO disproportionation and the major SWCNT species was found to be (7, 5) SWCNTs at a reaction temperature of 800 °C. The temperature-dependent selective growth of the two SWCNT species was found, by density functional theory calculation, to be strongly correlated with the change of the relative thermodynamic stability of the SWCNT nuclei in the chirality assigning process at different temperatures.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1385894721050610; http://dx.doi.org/10.1016/j.cej.2021.133487; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85119175026&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1385894721050610; https://dx.doi.org/10.1016/j.cej.2021.133487
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know