A sulfone-based crystalline organic electrolyte for 5 V solid-state potassium batteries
Chemical Engineering Journal, ISSN: 1385-8947, Vol: 443, Page: 136403
2022
- 9Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Solid-state potassium batteries are promising energy storage systems, but their wide use requires suitable solid electrolytes to ensure high ionic conductivity, electrochemical stability, and contacting ability with composite electrodes. For this purpose, this study introduces sulfone-based crystalline organic electrolytes (SCOEs) consisting of dimethyl sulfone (DMS) and potassium bis(fluorosulfonyl)imide (KFSI). One solid-state SCOE, KFSI/DMS 1:9 by mol, exhibits high ionic conductivity (4.0 × 10 −4 S cm −1 at 25 °C), oxidation stability (∼5.8 V vs. K + /K), and negligible flammability. Moreover, owing to its optimal melting point (94 °C), the SCOE enables seamless contact with the composite electrodes through the melt-casting process, which has been challenging for other solid-state electrolytes. K||KVPO 4 F cells filled with this SCOE show improved cycle performance (capacity retention 88.8% after 100 cycles vs. 77.6% after 74 cycles at 25 °C) with high Coulombic efficiency (asymptotic value 99.6% vs. 92.0%) compared to cells with a conventional carbonate electrolyte. With these results, the developed SCOE paves the way to room-temperature operable, 5 V solid-state potassium batteries.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1385894722018988; http://dx.doi.org/10.1016/j.cej.2022.136403; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128472005&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1385894722018988; https://dx.doi.org/10.1016/j.cej.2022.136403
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know