Skin-inspired tactile sensor based on gradient pore structure enable broad range response and ultrahigh pressure resolution
Chemical Engineering Journal, ISSN: 1385-8947, Vol: 443, Page: 136446
2022
- 40Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Tactile sensing is highly essential for the dexterous manipulation of robots. Nevertheless, the existed tactile sensors fail to realize high sensitivity and pressure resolution in a large pressure range, simultaneously. To concern this issue, we present a skin-structure inspired strategy to prepare gradient pore microstructure (GPS) films which thus have gradient elastic modulus along film thickness direction, similar to the dermis of skin. The tactile sensors made of this GPS films show an improved sensitivity of 3.74 kPa −1, an ultrahigh pressure resolution of 0.06% and broad range response of 0–800 kPa because of high structural compressibility and stress adaptation characteristics of GPS film. Meanwhile, the sensors achieve a fast response time of 15 ms and a low detection limit of 1.65 Pa as well as good cycle stability. Further, an 8 × 8 sensors array shows a performance of accurate real-time pressure mapping. Therefore, GPS-based sensors provide a new avenue to realize high-performance tactile perception in the artificial intelligence equipment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1385894722019416; http://dx.doi.org/10.1016/j.cej.2022.136446; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128958251&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1385894722019416; https://dx.doi.org/10.1016/j.cej.2022.136446
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know