High-efficient electromagnetic wave absorption of coral-like Co/CoO/RGO hybrid aerogels with good hydrophobic and thermal insulation properties
Chemical Engineering Journal, ISSN: 1385-8947, Vol: 471, Page: 144535
2023
- 30Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Addressing the growing issue of electromagnetic radiation calls for urgent exploration of effective electromagnetic wave absorbers. Herein, a series of coral-like Co/CoO nanoparticles/reduced graphene oxide (Co/CoO/RGO) hybrid aerogels were synthesized via a freeze drying-thermal reduction strategy. Their advantages involving porous interconnected framework, abundant heterogeneous interfaces, and integration of dielectric/magnetic units could bring multiple loss modes. By manipulating the Co(CO 3 ) 0.5 (OH)·0.11H 2 O (CCOH) addition and reduction temperature, the electromagnetic parameters could be tuned, ultimately resulting in optimal absorption capability with maximal reflection loss of –32.4 dB and effective bandwidth of 4.2 GHz. More importantly, excepting the high electromagnetic wave loss, Co/CoO/RGO hybrid aerogels also exhibit good hydrophobicity and thermal insulation properties, making them suitable for application in harsh environment. Besides, the special structure and multiple components lead to multiple heterointerfaces in aerogels, the resultant interface polarization is deemed to contribute to electromagnetic wave loss. Here, Density Functional Theory (DFT) simulation based on first-principles is adopted to verify the contribution of interface polarization from the theoretical level. According to the simulation results, the electron-occupied states near the Fermi level are significantly different among the different phases comprising the heterointerfaces, and there is a noticeable accumulation of charge at these interfaces, successfully affirming the interface polarization behavior at different interfaces.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1385894723032667; http://dx.doi.org/10.1016/j.cej.2023.144535; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85165119252&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1385894723032667; https://dx.doi.org/10.1016/j.cej.2023.144535
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know