High capacity and long service in sodium-ion batteries achieved by the refinement of BiOCl from lamellar to flower-like in ether electrolyte
Chemical Engineering Journal, ISSN: 1385-8947, Vol: 489, Page: 151346
2024
- 8Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Sodium-ion batteries (SIBs) have emerged as a promising contender in power systems owing to their cost-effectiveness and safety advantages. However, alloy-type anode materials, crucial for SIB performance, often face challenges such as significant volume expansion and rapid capacity decay at high current densities. In this study, an ion-exchange strategy is used to fabricate ultra-thin and porous BiOCl nanosheets (UTP BiOCl NS) as an anode material for SIB. Remarkably, lamellar UTP BiOCl NSs can transform a flower-like shape in ether electrolytes. This structural change is beneficial in shortening the Na + transport path, which facilitates rapid electrolyte entry and enhances the dynamic behavior of SIBs. Electrochemically, UTP BiOCl NS demonstrates an exceptional capacity of 212.4 mAh/g and high service stability of up to 3000 cycles at a high current density of 5 A/g, showcasing exceptional durability and promising application potential. Furthermore, the SIB full-cell, coupled with a Na 3 V 2 (PO 4 ) 3 cathode and UTP BiOCl NS anode, enables an outstanding sodium storage capacity of 140.5 mAh/g and powers a 3 W bulb. This research provides a strategic approach for identifying suitable SIB anodes and aims to inspire researchers to focus on advancing anode materials in SIBs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S138589472402833X; http://dx.doi.org/10.1016/j.cej.2024.151346; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85190506750&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S138589472402833X; https://dx.doi.org/10.1016/j.cej.2024.151346
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know