Coronary Artery Formation Is Driven by Localized Expression of R-spondin3
Cell Reports, ISSN: 2211-1247, Vol: 20, Issue: 8, Page: 1745-1754
2017
- 8Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef7
- Captures25
- Readers25
- 25
Article Description
Coronary arteries are essential to support the heart with oxygen, and coronary heart disease is one of the leading causes of death worldwide. The coronary arteries form at highly stereotyped locations and are derived from the primitive vascular plexus of the heart. How coronary arteries are remodeled and the signaling molecules that govern this process are poorly understood. Here, we have identified the Wnt-signaling modulator Rspo3 as a crucial regulator of coronary artery formation in the developing heart. Rspo3 is specifically expressed around the coronary stems at critical time points in their development. Temporal ablation of Rspo3 at E11.5 leads to decreased β-catenin signaling and a reduction in arterial-specific proliferation. As a result, the coronary stems are defective and the arterial tree does not form properly. These results identify a mechanism through which localized expression of RSPO3 induces proliferation of the coronary arteries at their stems and permits their formation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2211124717310744; http://dx.doi.org/10.1016/j.celrep.2017.08.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85028326808&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/28834739; https://linkinghub.elsevier.com/retrieve/pii/S2211124717310744; https://dx.doi.org/10.1016/j.celrep.2017.08.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know