Developing enhanced immunotherapy using NKG2A knockout human pluripotent stem cell-derived NK cells
Cell Reports, ISSN: 2211-1247, Vol: 43, Issue: 11, Page: 114867
2024
- 7Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures7
- Readers7
- Mentions1
- News Mentions1
- News1
Most Recent News
City of Hope Research Spotlight, October 2024
image: Led by City of Hope’s Dani Castillo, M.D., City of Hope assistant clinical professor of medical oncology and therapeutics research, and S. Peter Wu,
Article Description
Cancer immunotherapy is gaining increasing attention. However, immune checkpoints are exploited by cancer cells to evade anti-tumor immunotherapy. Here, we knocked out NKG2A, an immune checkpoint expressed on natural killer (NK) cells, in human pluripotent stem cells (hPSCs) and differentiated these hPSCs into NK (PSC-NK) cells. We show that NKG2A knockout (KO) enhances the anti-tumor and anti-viral capabilities of PSC-NK cells. NKG2A KO endows PSC-NK cells with higher cytotoxicity against HLA-E-expressing glioblastoma (GBM) cells, leukemia cells, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells in vitro. The NKG2A KO PSC-NK cells also exerted potent anti-tumor activity in vivo, leading to substantially suppressed tumor progression and prolonged survival of tumor-bearing mice in a xenograft GBM mouse model. These findings underscore the potential of PSC-NK cells with immune checkpoint KO as a promising cell-based immunotherapy. The unlimited supply and ease of genetic engineering of hPSCs makes genetically engineered PSC-NK an attractive option for easily accessible “off-the-shelf” cancer immunotherapy.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S221112472401218X; http://dx.doi.org/10.1016/j.celrep.2024.114867; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85207764477&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39447568; https://linkinghub.elsevier.com/retrieve/pii/S221112472401218X; https://dx.doi.org/10.1016/j.celrep.2024.114867
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know