MONN: A Multi-objective Neural Network for Predicting Compound-Protein Interactions and Affinities
Cell Systems, ISSN: 2405-4712, Vol: 10, Issue: 4, Page: 308-322.e11
2020
- 149Citations
- 140Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Computational approaches for understanding compound-protein interactions (CPIs) can greatly facilitate drug development. Recently, a number of deep-learning-based methods have been proposed to predict binding affinities and attempt to capture local interaction sites in compounds and proteins through neural attentions (i.e., neural network architectures that enable the interpretation of feature importance). Here, we compiled a benchmark dataset containing the inter-molecular non-covalent interactions for more than 10,000 compound-protein pairs and systematically evaluated the interpretability of neural attentions in existing models. We also developed a multi-objective neural network, called MONN, to predict both non-covalent interactions and binding affinities between compounds and proteins. Comprehensive evaluation demonstrated that MONN can successfully predict the non-covalent interactions between compounds and proteins that cannot be effectively captured by neural attentions in previous prediction methods. Moreover, MONN outperforms other state-of-the-art methods in predicting binding affinities. Source code for MONN is freely available for download at https://github.com/lishuya17/MONN.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405471220300818; http://dx.doi.org/10.1016/j.cels.2020.03.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083365922&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2405471220300818; https://dx.doi.org/10.1016/j.cels.2020.03.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know