Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting
Cell Systems, ISSN: 2405-4712, Vol: 14, Issue: 12, Page: 1087-1102.e13
2023
- 17Citations
- 62Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- CrossRef17
- 16
- Captures62
- Readers62
- 62
Article Description
Effective and precise mammalian transcriptome engineering technologies are needed to accelerate biological discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases, their utility has been hampered by an incomplete understanding of guide RNA design rules and cellular toxicity resulting from off-target or collateral RNA cleavage. Here, we quantified the performance of over 127,000 RfxCas13d (CasRx) guide RNAs and systematically evaluated seven machine learning models to build a guide efficiency prediction algorithm orthogonally validated across multiple human cell types. Deep learning model interpretation revealed preferred sequence motifs and secondary features for highly efficient guides. We next identified and screened 46 novel Cas13d orthologs, finding that DjCas13d achieves low cellular toxicity and high specificity—even when targeting abundant transcripts in sensitive cell types, including stem cells and neurons. Our Cas13d guide efficiency model was successfully generalized to DjCas13d, illustrating the power of combining machine learning with ortholog discovery to advance RNA targeting in human cells.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405471223003290; http://dx.doi.org/10.1016/j.cels.2023.11.006; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180304526&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38091991; https://linkinghub.elsevier.com/retrieve/pii/S2405471223003290; https://dx.doi.org/10.1016/j.cels.2023.11.006
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know