PlumX Metrics
Embed PlumX Metrics

Growth of ZnO nanowires on carbon fibers for photocatalytic degradation of methylene blue aqueous solutions: An investigation on the optimization of processing parameters through response surface methodology/central composite design

Ceramics International, ISSN: 0272-8842, Vol: 46, Issue: 6, Page: 7459-7474
2020
  • 28
    Citations
  • 0
    Usage
  • 50
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    28
    • Citation Indexes
      28
  • Captures
    50

Article Description

In this work, effects of hydrothermal (HT) synthesis method parameters, temperature, concentration and growth time, on the formation of zinc oxide nanowire structures on carbon fibers (ZnO NWs/CFs) were evaluated. Morphological, structural, photocatalytic properties were determined through scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV–Visible spectrophotometer. In addition, response surface methodology (RSM) and central composite design (CCD) were applied to optimize the hydrothermal synthesis parameters. The results pointed out that, the change in hydrothermal solution concentration (from 3.2 to 37 mM ZnNO 3· 6H 2 O) and process time (from 2.6 to 9.2 h) lead to the increase in thickness and decrease in aspect ratio of zinc oxide nanowires. Whereas, the temperature increases from 80 to 130 °C had a minute effect on the structure. ZnO nanowires with zincite structure were obtained for all processing conditions. Finally, photocatalytic activity of ZnO NWs/CFs on the degradation of aqueous methylene blue solution (MB) were recorded comparatively. ZnO NWs/CFs structure exhibited photocatalytic activity in the degradation of methylene blue (MB). The most effective structure was obtained at 120 °C, 30 mM Zn(NO 3 ) 2· 6H 2 O and 4 h HT synthesis parameters.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know