Magnesium-enhanced porous hydroxyapatite ceramics: Morphometric parameters, physical properties and bioactivity
Ceramics International, ISSN: 0272-8842, Vol: 50, Issue: 7, Page: 10967-10973
2024
- 2Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The application of porous bioactive ceramics as bone substitutes requires their effective osseointegration, which relies on specific physical and biological properties. In this study, we developed porous magnesium-doped hydroxyapatite (MgHA) ceramics with four different magnesium concentrations (0.25, 2, 5 and 10 mol%). The ceramics were prepared through the polymeric replication sponge method and subjected to physical and biological characterizations. Upon sintering, the porous 10 mol% MgHA ceramics exhibited increased densification, which resulted in the highest compressive strength of 2.17 MPa at the lowest porosity of 31 %. The porous samples were analysed via microcomputed tomography. The scaffolds with 0.25 and 10 mol% Mg doping concentrations were selected to elucidate the influence of Mg on morphometric parameters and biological properties at two distinct levels. The high level of Mg doping led to considerable improvements in relative bone volume, connectivity density, trabecular number and trabecular thickness. Cell attachment and proliferation tests using Vero cell lines were conducted on both samples to investigate the correlations between their morphometric parameters and bioactivities. Substantially more cells attached to and proliferated on the surface of the 10 mol% MgHA ceramics compared with those on the ceramics containing 0.25 mol% MgHA. In summary, our study underscores the effectiveness of Mg incorporation in improving the physical and biological properties of porous HA ceramics, which makes them promising candidates for bone substitute applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0272884223043493; http://dx.doi.org/10.1016/j.ceramint.2023.12.413; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85182004545&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0272884223043493; https://dx.doi.org/10.1016/j.ceramint.2023.12.413
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know