Multidimensional scaling and visualization of patterns in global large-scale accidents
Chaos, Solitons & Fractals, ISSN: 0960-0779, Vol: 157, Page: 111951
2022
- 6Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Catastrophic events have been commonly referred to as phase transitions in complex systems (CS). This paper proposes an approach based on unsupervised machine learning to identify phases and phase transitions in the dynamics of CS. The testbed is a dataset of causalities and events associated with global large-scale accidents. Multidimensional time-series are generated from the raw data and are interpreted as the output of a CS. The time-series are normalized and segmented in the time-domain, and the resulting objects are used to characterize the behavior of the dynamical process. The objects are compared through a number of distances and the information by the multidimensional scaling (MDS) technique, respectively. The time is displayed as a parametric variable. The generated portraits have a complex nature, with periods of chaotic-like behavior, and are analyzed in terms of the emerging patterns. The results show that the adoption of MDS is a relevant modeling tool using present day computational resources.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960077922001618; http://dx.doi.org/10.1016/j.chaos.2022.111951; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85125949231&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0960077922001618; https://dx.doi.org/10.1016/j.chaos.2022.111951
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know