Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems
Chaos, Solitons & Fractals, ISSN: 0960-0779, Vol: 163, Page: 112611
2022
- 29Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A new avenue of fractional calculus applications has emerged that investigates the design of fractional gradient based novel iterative methods for analyzing fractals and nonlinear dynamics in solving engineering and applied sciences problems. The most discussed algorithm in this regard is fractional least mean square (FLMS) algorithm. This study presents an auxiliary model based normalized variable initial value FLMS (AM-NVIV-FLMS) algorithm for input nonlinear output error (INOE) system identification. First, NVIV-FLMS is presented to automatically tune the learning rate parameter of VIV-FLMS and then the AM-NVIV-FLMS is introduced by incorporating the auxiliary model idea that replaces the unknown values of the information vector with the output of auxiliary model. The proposed AM-NVIV-FLMS scheme is accurate, convergent, robust and reliable for INOE system identification. Simulation results validate the significance and efficacy of the proposed scheme.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960077922007950; http://dx.doi.org/10.1016/j.chaos.2022.112611; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85137017647&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0960077922007950; https://dx.doi.org/10.1016/j.chaos.2022.112611
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know