Design of key term separated identification model for fractional input nonlinear output error systems: Auxiliary model based Runge Kutta optimization algorithm
Chaos, Solitons & Fractals, ISSN: 0960-0779, Vol: 189, Page: 115696
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fractional calculus generalizes the conventional calculus to real order and become a popular tool for efficient modeling of complex engineering problems by providing better insight to the system through involving historical information. In this study, fractional calculus concepts are incorporated into input nonlinear output error (INOE) system and is generalized to fractional INOE (FINOE) model through Grunwald-Letnikov differential operator. The key-term-separation based identification model is presented to estimate the parameters of FINOE system that avoids the burden of identifying extra parameters due to cross product terms. The parameter estimation of systems modeled by Hammerstein output error structure is a challenging task, especially with incorporation of fractional concepts. An auxiliary model based Runge Kutta (RUN) optimization methodology is proposed for viable estimation of FINOE parameters by using the estimate for unmeasurable terms of information vector. The mean-square-error based fitness function is developed that minimizes the difference between the actual and estimated responses of the FINOE system. The efficacy of the proposed scheme is investigated in terms of convergence speed, computational cost, resilience, stability and correctness in approximation of accurate weights of the FINOE system for multiple noise variations. The superiority of the RUN for FINOE is endorsed via comparative analysis with 8 states of the arts in noisy environments.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know