PlumX Metrics
Embed PlumX Metrics

Insight into oscillation of wall temperature and horizontal Lorentz force in rotating water conveying solid aluminum oxide tiny particles nanolayer via simulation of finite element computation

Chaos, Solitons & Fractals, ISSN: 0960-0779, Vol: 194, Page: 116141
2025
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

This present exploration aims to investigate the significance of the roles played by nanoparticles, nanolayer thickness, sinusoidal surface temperature, magnetohydrodynamic, and mixed convection fluid flow across extending surface. Our objective is to explore nanolayer mechanism, sinusoidal surface temperature, and nanoparticles volume concentration effects the dynamics of fluid. The leading equations of energy and momentum are converted into dimensionless form by using appropriate transformation. By using Finite element method (FEM) in MATLAB, the solution of final non-linear equations is obtained. Heat transfer and share stress augments with higher values of nanoparticle concentration χ. Heat transfer rate and share stress has significant reducing behavior against greater values of rotating parameter. The amplifies in the magnetic strength causes declination in share stress coefficient CfxRex0.5 while share stress coefficient CfxRex0.5 has opposite behavior. When amplitude of surface temperature oscillation increase, the shear stress and heat transfer rate across the surface increases. To ensure the validity of present outcomes, a comprehensive comparison with existing outcomes is conducted and found an excellent relationship between them.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know