Mechanistic MALDI-TOF Cell-Based Assay for the Discovery of Potent and Specific Fatty Acid Synthase Inhibitors
Cell Chemical Biology, ISSN: 2451-9456, Vol: 26, Issue: 9, Page: 1322-1331.e4
2019
- 12Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef6
- Captures33
- Readers33
- 33
Article Description
Human cancers require fatty acid synthase (FASN)-dependent de novo long-chain fatty acid synthesis for proliferation. FASN is therefore an attractive drug target, but fast technologies for reliable label-free cellular compound profiling are lacking. Recently, MALDI-mass spectrometry (MALDI-MS) has emerged as an effective technology for discovery of recombinant protein target inhibitors. Here we present an automated, mechanistic MALDI-MS cell assay, which monitors accumulation of the FASN substrate, malonyl-coenzyme A (CoA), in whole cells with limited sample preparation. Profiling of inhibitors, including unpublished compounds, identified compound 1 as the most potent FASN inhibitor (1 nM in A549 cells) discovered to date. Moreover, cellular MALDI-MS assays enable parallel profiling of additional pathway metabolites. Surprisingly, several compounds triggered cytidine 5’-diphosphocholine (CDP-choline) but not malonyl-CoA accumulation indicating that they inhibit diacylglycerol generation but not FASN activity. Taken together, our study suggests that MALDI-MS cell assays may become important tools in drug profiling that provide additional mechanistic insights concerning compound action on metabolic pathways.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2451945619302053; http://dx.doi.org/10.1016/j.chembiol.2019.06.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85072199148&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31279605; https://linkinghub.elsevier.com/retrieve/pii/S2451945619302053; https://dx.doi.org/10.1016/j.chembiol.2019.06.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know