Memetic algorithms-based artificial multiplicative neural models selection for resolving multi-component mixtures based on dynamic responses
Chemometrics and Intelligent Laboratory Systems, ISSN: 0169-7439, Vol: 85, Issue: 2, Page: 232-242
2007
- 8Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The potential of the product unit neural networks built by using different memetic evolutionary algorithms for the simultaneous determination of mixtures of analytes based on dynamic responses was investigated. For this purpose, three methodologies for obtaining the structure and weights of neural networks were proposed, based on the combination of the evolutionary programming algorithm, a clustering process and a local improvement procedure carried out by the Levenberg–Marquardt algorithm. To test these approaches, two phenol derivatives, pyrogallol and gallic acid, were quantified in mixtures based on their perturbation effect in a classical oscillating chemical system, namely, the Belousov–Zhabotinskyi reaction. The four-parameter Weibull curve associated with the profile of perturbation response estimated by the Levenberg–Marquardt method was used as input data for the models. Straightforward network topologies 4:3:1 (13 weights) and 4:2:1 (9 weights) for pyrogallol and gallic acid, respectively, allowed the analytes to be quantified with great accuracy (mean standard error of prediction for the generalization test) and precision (standard deviation) of 2.45% and 0.21 for pyrogallol and 7.61% and 1.63 for gallic acid. The selected model can be easily implemented via software by using simple quantification equations, from which significant chemical remarks can be inferred. Finally, the product unit neural network modelling offered better results when compared with sigmoidal neural networks and response surface analysis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169743906001523; http://dx.doi.org/10.1016/j.chemolab.2006.06.020; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=33847682944&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0169743906001523; https://dx.doi.org/10.1016/j.chemolab.2006.06.020
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know