Water flow paths are hotspots for the dissemination of antibiotic resistance in soil
Chemosphere, ISSN: 0045-6535, Vol: 193, Page: 1198-1206
2018
- 29Citations
- 91Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations29
- Citation Indexes29
- 29
- CrossRef27
- Captures91
- Readers91
- 91
Article Description
Antibiotic resistance genes in soil pose a potential risk for human health. They can enter the soil by irrigation with untreated or insufficiently treated waste water. We hypothesized that water flow paths trigger the formation of antibiotic resistance, since they transport antibiotics, multi-resistant bacteria and free resistance genes through the soil. To test this, we irrigated soil cores once or twice with waste water only, or with waste water added with sulfamethoxazole (SMX) and ciprofloxacin (CIP). The treatments also contained a dye to stain the water flow paths and allowed to sample these separately from unstained bulk soil. The fate of SMX and CIP was assessed by sorption experiments, leachate analyses and the quantification of total and extractable SMX and CIP in soil. The abundance of resistance genes to SMX ( sul1 and sul2 ) and to CIP ( qnrB and qnrS ) was quantified by qPCR. The sorption of CIP was larger than the dye and SMX. Ciprofloxacin accumulated exclusively in the water flow paths but the resistance genes qnrB and qnrS were not detectable. The SMX concentration in the water flow paths doubled the concentration of the bulk soil, as did the abundance of sul genes, particularly sul1 gene. These results suggest that flow paths do function as hotspots for the accumulation of antibiotics and trigger the formation of resistance genes in soil. Their dissemination also depends on the mobility of the antibiotic, which was much larger for SMX than for CIP.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045653517319203; http://dx.doi.org/10.1016/j.chemosphere.2017.11.143; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85035746751&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/29874749; https://linkinghub.elsevier.com/retrieve/pii/S0045653517319203; https://dx.doi.org/10.1016/j.chemosphere.2017.11.143
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know