The freshwater isopod Asellus aquaticus as a model biomonitor of environmental pollution: A review
Chemosphere, ISSN: 0045-6535, Vol: 235, Page: 498-509
2019
- 25Citations
- 71Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations25
- Citation Indexes25
- 25
- CrossRef12
- Captures71
- Readers71
- 71
Review Description
Anthropogenic substances pollute freshwater systems worldwide, with serious, long-lasting effects to aquatic biota. Present methods of detecting elevated levels of trace metal pollutants are typically accurate but expensive, and therefore not suitable for applications requiring high spatial resolution. Additionally, these methods are not efficient solutions for the determination of long-term averages of pollution concentration. This is the rationale for the implementation of a biomonitoring programme as an alternative means of pollutant detection. This review summarises recent literature concerning the past and potential uses of the benthic isopod Asellus aquaticus as a biomonitor for pollution in freshwater systems. Recent studies indicate that A. aquaticus is well suited for this purpose. However, the mechanisms by which it bioaccumulates toxins have yet to be fully understood. In particular, the interactions between coexisting trace metal pollutants in the aquatic environment have only recently been considered, and it remains unclear how a biomonitoring programme should adapt to the effects of these interactions. It is evident that failing to account for these additional stressors will result in an ineffective biomonitoring programme; for this reason, a comprehensive understanding of the bioaccumulation mechanisms is required in order to reliably anticipate the effects of any interferences on the outcome.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045653519314584; http://dx.doi.org/10.1016/j.chemosphere.2019.06.217; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85068210984&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31276864; https://linkinghub.elsevier.com/retrieve/pii/S0045653519314584; https://dx.doi.org/10.1016/j.chemosphere.2019.06.217
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know