Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area
Chemosphere, ISSN: 0045-6535, Vol: 271, Page: 129538
2021
- 38Citations
- 50Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations38
- Citation Indexes38
- 38
- CrossRef20
- Captures50
- Readers50
- 50
Article Description
This study investigated the effects of soil amendments including biomasses (rice husk, RRH and maple leaf, RML), biochar (rice husk biochar, RHB and maple leaf biochar, MLB), and industrial by-products (red mud, RM and steel slag, SS), at two application rates (0, 1, and 2% w/w) on leaching and bioavailability of heavy metal(loid)s (HMs) (As, Cd, Cu, Pb, and Zn) in the presence of an Asteraceae (i.e., lettuce). Physicochemical properties of the soil (i.e., pH, EC, CEC, and HMs leaching) and plants were examined before and after amending. The addition of amendments significantly (p < 0.05) increased soil EC (from 100 to 180 μScm −1 ) and CEC (from 7.6 to 15 meq100 g −1 ). Soil pH from 6.7 ± 0.05 increased about 2 units with increasing in the application rate of MLB, RM, and SS, while it decreased about 0.8 units in RML amended soil. Soil amendments reduced the easily leachable fractions (exchangeable and carbonate) of HMs in the order of MLB > SS > RM > RHB. The average concentration of Cd, Cu, Pb, and Zn in plant roots and shoots decreased >30 wt% in biochars and industrial by-products amended soils, while biomasses mitigated As uptake in lettuce. Results demonstrated that adding maple-derived biochar combined with revegetation effectively immobilized HMs in a post-mining area beside an induce in plant growth parameters.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045653521000084; http://dx.doi.org/10.1016/j.chemosphere.2021.129538; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099280749&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33453484; https://linkinghub.elsevier.com/retrieve/pii/S0045653521000084; https://dx.doi.org/10.1016/j.chemosphere.2021.129538
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know