Electrokinetic remediation for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated soil
Chemosphere, ISSN: 0045-6535, Vol: 291, Issue: Pt 3, Page: 133041
2022
- 23Citations
- 62Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes21
- 21
- Policy Citations2
- 2
- Captures62
- Readers62
- 62
Article Description
Uncontrolled use and disposal of per- and polyfluoroalkyl substances (PFASs) in recent decades has resulted in extensive soil and groundwater contamination, necessitating counteraction. Electrokinetic remediation (EKR) offers a promising approach to in-situ soil remediation. Two novel modifications to conventional EKR were tested for the first time in a laboratory-scale study, to explore the capacity of EKR for PFAS removal. The first modification was a two-compartment setup designed for PFAS extraction from soil to an electrolyte-filled chamber. The second was a single-compartment setup designed to transport and confine contaminants in a chamber filled with granular activated carbon (GAC), thus, combining extraction with stabilisation. Electromigration varied for individual compounds, based mainly on perfluorocarbon chain length and functional group. The results indicated up to 89% concentration and extraction of ∑PFASs for the two-compartment setup, with removal efficiency reaching 99% for individual PFASs with C ≤ 6. Removed PFASs were concentrated adjacent to the anode at the anion exchange membrane, while short-chain compounds were extracted in the anolyte. The single-compartment setup achieved 75% extraction and accumulation of ∑PFASs in GAC. This demonstrates, for the first time, good effectiveness of coupling EKR with AC stabilisation for PFAS removal from soil. Perfluorocarbon chain length was a dominant factor affecting treatment efficiency in both setups, with very high removal rates for short-chain PFASs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S004565352103513X; http://dx.doi.org/10.1016/j.chemosphere.2021.133041; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85120062381&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34826446; https://linkinghub.elsevier.com/retrieve/pii/S004565352103513X; https://dx.doi.org/10.1016/j.chemosphere.2021.133041
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know