Facile preparation of UiO-66@PPy nanostructures for rapid and efficient adsorption of fluoride: Adsorption characteristics and mechanisms
Chemosphere, ISSN: 0045-6535, Vol: 289, Page: 133164
2022
- 29Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A nanocomposite of a zirconium-based metal-organic framework (UiO-66) @ polypyrrole (PPy) (UiO-66@PPy) was successfully synthesized to eliminate F − from groundwater. The optimum initial pH and adsorbent dose for maximum uptake of F − from aqueous solution were found to be 3.0 and 0.1 g/L, respectively. The fluoride removal performance of UiO-66 was greatly enhanced through the introduction of polypyrrole guests, and the maximum adsorption capacity of UiO-66@PPy, namely, 290.7 mg/g, was reached, which is far superior to those of other previously reported adsorbents. The fluoride adsorption by UiO-66@PPy agreed well with the pseudo-second-order equation model and Langmuir isotherm model. The coexisting PO 4 3− and CO 3 2− substantially influence fluoride removal. The synthesized UiO-66@PPy could be reused five times in adsorption-desorption cycles. The incorporation of conducting polymers opened additional paths for the development of adsorbent materials; thus, UiO-66@PPy could be a viable adsorbent material and contribute to fluoride removal from groundwater.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045653521036365; http://dx.doi.org/10.1016/j.chemosphere.2021.133164; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85120608358&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34875289; https://linkinghub.elsevier.com/retrieve/pii/S0045653521036365; https://dx.doi.org/10.1016/j.chemosphere.2021.133164
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know