CaO-assisted hydrothermal treatment combined with incineration of sewage sludge: Focusing on phosphorus (P) fractions, P-bioavailability, and heavy metals behaviors
Chemosphere, ISSN: 0045-6535, Vol: 308, Issue: Pt 2, Page: 136391
2022
- 21Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Dewatering of sewage sludge (SS) was the prerequisite for saving its drying energy and sustaining its stable combustion. Hydrothermal treatment (HT) has been a promising technology for improving SS dewaterability with high energy efficiency. However, the knowledge of phosphorus (P) transformation and heavy metals (HMs) behaviors in the combined HT and incineration process was still lack. P fractions, P-bioavailability, HMs speciation, and their environmental risk in the ash samples from this combination process were evaluated and compared with those from the co-incineration of SS and CaO. The combination process was superior to the latter one in the light of P and HMs. CaO preferred to enhance the transformation of non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP) initially with enriched P and increased P-bioavailability in the resultant ash samples. The combination process further reduced the values of risk assessment code and individual contamination factor with the increment of the stable F4 fraction in HMs. Significant reduction of potential ecological risk was observed with the lowest global risk index of 43.76 in the combination process. Optimum CaO addition of 6% was proposed in terms of P and HMs. The work here can provide theoretical references for the potential utilization of P from SS to mitigate the foreseeable shortage of P rocks.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045653522028843; http://dx.doi.org/10.1016/j.chemosphere.2022.136391; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138089809&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36096311; https://linkinghub.elsevier.com/retrieve/pii/S0045653522028843; https://dx.doi.org/10.1016/j.chemosphere.2022.136391
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know