Synergistic solidification of lead-contaminated soil by magnesium oxide and microorganisms
Chemosphere, ISSN: 0045-6535, Vol: 308, Issue: Pt 2, Page: 136422
2022
- 24Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Although microbially induced carbonate precipitation (MICP) technology effectively promotes the remediation of heavy metal contaminated soils in low concentrations, the high concentration of heavy metals has a toxic effect on microorganisms, which leads to the decline of carbonate yield and makes the soil strength and environmental safety after remediation no up to the standard. This study describes the synergistic curing effect of MgO and microorganisms on soil contaminated with high concentrations of heavy metals. The experimental results with MgO showed 2–6 times increase in unconfined compressive strength (UCS) compared to bio-cemented samples without MgO. Toxicity characteristic leaching procedure experiments indicated that Pb-contaminated soil at 10,000 mg/kg with quantitative MgO for synergistic solidification could meet the international solid waste disposal standards, which leachable Pb 2+ are less than 5 mg/L. In addition, the microscopic results showed that the introduction of MgO promoted the formation of magnesium calcite and dolomite, improved the solidification efficiency of heavy metal contaminants, and demonstrated the presence of Pb 2+ in carbonate minerals. This study suggests that MgO and microorganisms have broad application prospects for synergistic solidification of Pb 2+ soil.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045653522029150; http://dx.doi.org/10.1016/j.chemosphere.2022.136422; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138040106&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36113657; https://linkinghub.elsevier.com/retrieve/pii/S0045653522029150; https://dx.doi.org/10.1016/j.chemosphere.2022.136422
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know