Efficient removal of Cr (VI) from aqueous solution using memory effect property of layered double hydroxide material
Chemosphere, ISSN: 0045-6535, Vol: 341, Page: 140127
2023
- 23Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes23
- 23
- CrossRef4
- Captures21
- Readers21
- 21
Article Description
Treating wastewater containing pollutants with layered double hydroxide (LDH) material attracts excellent interest. LDH materials are known by the memory effect property, which leads to the reconstruction of the LDH structure after its calcination and rehydration. In this study, LDH material was prepared, calcined, and then rehydrated in an aqueous Cr(VI) solution. XRD, FTIR, and SEM-EDS analysis confirm the successful reconstruction of LDH-loading chromium on its surface and layered space. Response surface methodology (RSM) results showed that LDH mass, contact time, and chromium concentration are the main factors controlling the removal of Cr(VI). The heterogeneous sorption of chromium was described by fitting the equilibrium data to the Freundlich model. Analytical techniques, thermodynamic data, activation, and adsorption energies confirm that the removal process of Cr(VI) is endothermic, spontaneous, and physical nature. LDH exhibits good reusability performance with only a 7% reduction of initial adsorption capacity after five cycles of the calcination-rehydration process. These results show that the memory effect of LDH is helpful for the intercalation and the removal of emergent pollutants, especially for wastewater treatment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045653523023974; http://dx.doi.org/10.1016/j.chemosphere.2023.140127; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85170425478&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37690565; https://linkinghub.elsevier.com/retrieve/pii/S0045653523023974; https://dx.doi.org/10.1016/j.chemosphere.2023.140127
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know