On the theoretical description of nuclear quadrupole coupling in Π states of small molecules
Chemical Physics, ISSN: 0301-0104, Vol: 425, Page: 126-133
2013
- 4Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Axial ( eQq 0 ) and perpendicular ( eQq 2 ) nuclear quadrupole coupling constants were evaluated from the electric field gradient at the quadrupolar nuclei ( 7 Li, 14 N, 17 O, 33 S, 35 Cl) in diatomic (LiO, CN, NH +, NH, N 2 +, NO, OH, HCl +, CCl, OCl, NS) and polyatomic (C 2 N, C 4 N, NCO, N 3 ) Π states. For diatomics the nuclear quadrupole coupling constants (NQCCs) were determined as a function of the vibrational quantum number. The calculations were performed using the internally contracted multireference configuration interaction and single-configuration coupled-cluster approaches with large correlation-consistent basis sets. The overall quality of the wave functions was tested by comparing the calculated electric dipole moments and diatomic spectroscopic constants with external data. The calculated NQCCs were discussed and compared with previous experimental and theoretical studies.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know