Stationary phase based on cellulose dodecanoate physically immobilized on silica particles for high-performance liquid chromatography
Journal of Chromatography A, ISSN: 0021-9673, Vol: 1572, Page: 72-81
2018
- 14Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef3
- Captures19
- Readers19
- 19
Article Description
The chemical agent free preparation of a stationary phase using a natural macromolecule was the focus of this paper. Thermal immobilization of cellulose dodecanoate on silica particles was used for the preparation of a stationary phase without the use of chemical reagents. Cellulose modification was performed to produce a hydrophobic macromolecule with solubility in common organic solvents. The new stationary phase was characterized morphologically and physico-chemically, presenting as spherical particles immobilized with a thin cellulose dodecanoate layer. The degree of substitution of cellulose dodecanoate was 1.7, which resulted in a separation mechanism in reversed phase mode, but with lower hydrophobicity and higher steric selectivity, which are properties from cellulose. These characteristics resulted in a stationary phase with intrinsic selectivity that was able to separate mixtures of polar drugs, homologs of an anionic surfactant and omeprazole isomers, which are not well resolved in typical C 18 phases. Considering that cellulose is a natural polymer and the preparation method of stationary phase involves only physical processes of silica modification, the final material presents as a stationary phase with specific retention properties coming from both dodecanoate and cellulose.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021967318310689; http://dx.doi.org/10.1016/j.chroma.2018.08.048; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85053077612&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/30153982; https://linkinghub.elsevier.com/retrieve/pii/S0021967318310689; https://dx.doi.org/10.1016/j.chroma.2018.08.048
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know