Digital tooth surface precision control model in spiral bevel gear processing through surface synthesis method combined with GEMS
CIRP Journal of Manufacturing Science and Technology, ISSN: 1755-5817, Vol: 55, Page: 292-307
2024
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- 1
Most Recent News
New Findings from Northwestern Polytechnic University in Manufacturing Science and Technology Provides New Insights (Digital Tooth Surface Precision Control Model In Spiral Bevel Gear Processing Through Surface Synthesis Method Combined With ...)
2024 DEC 02 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Investigators publish new report on Manufacturing - Manufacturing Science
Article Description
This paper presents an innovative digital tooth surface precision control model(DTS-PCM) for spiral bevel gears, focusing on the contact parameters derived from the surface synthesis method(SSM) and the pinion tooth surface contact control parameters under Gleason expert manufacturing system(GEMS). This model enables the direct derivation of tooth cutting adjustment parameters for Gleason machine tools, facilitating a seamless integration of design theory with practical processing. Firstly, a novel method for accurately determining the curvature parameters of pinion tooth surfaces, based on predefined contact parameters, has been developed using ease-off topology. Then, based on the pinion gear cutting pitch cone model, a coupled tooth line vector transformation model is proposed to calculate the principal curvature parameters of the nodes. Additionally, a set of equations for the pinion tooth surface contact control parameters is derived, and a formula for calculating the pinion gear cutting adjustment parameters is provided. Finally, two sets of pinion tooth surface contact control parameters were obtained using DTS-PCM: the calculated tooth contact analysis(TCA) and ease-of-topology results. The findings demonstrate that the proposed method is largely consistent with the outcomes of the GEMS calculations, thereby validating the accuracy of DTS-PCM. This indicates that the method can be directly integrated with GEMS software, facilitating practical applications that shorten the design and processing cycle.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know