Toward molecular characterization of asphaltene from different origins under different conditions by means of FT-IR spectroscopy
Advances in Colloid and Interface Science, ISSN: 0001-8686, Vol: 289, Page: 102314
2021
- 89Citations
- 88Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations89
- Citation Indexes89
- 89
- CrossRef58
- Captures88
- Readers88
- 88
Review Description
Asphaltene is one of the polar and heavy fractions of crude oil that is complex from a molecular perspective. For this reason, the interaction between asphaltene molecules and the surface, as well as the interaction of asphaltene with chemicals such as amphiphile, are not well identified. Fourier-transform infrared spectroscopy (FTIR) is a useful tool for identifying the functional groups of molecules, as well as intra-molecular and inter-molecular bonds. Through reviewing previous studies, here the peaks in an FTIR spectrum of an asphaltene molecule were divided into polar, aromatic and aliphatic groups and discussed using quantitative indices. Then, the difference in the FTIR spectrum of asphaltene with wax and resin was addressed according to molecular structure. The effect of common impurities such as moisture, CO 2 and saturated and aromatic compounds of crude oil in asphaltene on the FTIR spectrum is assessed. Moreover, the application of the FTIR spectrum of asphaltene is used to determine the API value of crude oil, the asphaltene onset is given. In addition, possible changes in the FTIR spectra of asphaltene are investigated by various processes such as pyrolysis, microwave and ultrasonic radiation. Also, asphaltene subfractions is also one of the best methods to better understand asphaltene components. This study examines the FTIR spectrum of asphaltene subfractions from conventional methods and examines the spectral properties, which in many cases can be useful to researchers working in this field.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0001868620305832; http://dx.doi.org/10.1016/j.cis.2020.102314; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100371947&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33561569; https://linkinghub.elsevier.com/retrieve/pii/S0001868620305832; https://dx.doi.org/10.1016/j.cis.2020.102314
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know