Plasticized polyvinyl chloride: From material properties to flexible applications
Advances in Colloid and Interface Science, ISSN: 0001-8686, Vol: 337, Page: 103384
2025
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The development of electroactive polymers (EAPs) affords novel integrated actuation and sensing technologies for intelligent flexible systems, enabling them to achieve remarkable flexibility and intelligence. Among EAPs, plasticized polyvinyl chloride (PVC) gel stands out as an ideal candidate for next-generation intelligent flexible applications due to its combination of exceptional actuation and sensing properties. This paper presents a comprehensive overview of recent advances in PVC gel actuators and sensors, including fabrication, properties, modeling, and applications. In particular, the outstanding actuation and sensing properties of PVC gel are thoroughly analyzed to exhibit its immense potential for application in smart flexible devices. Furthermore, the inherent relationships between the properties and materials of PVC gel are further revealed. Moreover, recent modification techniques to enhance the actuation and sensing properties of PVC gel are summarized, offering guidance for improving its properties. The current challenges and promising perspectives for enhancing performance and facilitating applications are finally discussed. We believe this paper will inspire the development of high-performance flexible devices employing PVC gel, as well as other EAPs, thereby paving the way for their practical applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0001868624003075; http://dx.doi.org/10.1016/j.cis.2024.103384; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85213023323&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39729823; https://linkinghub.elsevier.com/retrieve/pii/S0001868624003075
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know