Thermodynamics and kinetics insights into naphthalene hydrogenation over a Ni-Mo catalyst
Chinese Journal of Chemical Engineering, ISSN: 1004-9541, Vol: 39, Page: 173-182
2021
- 11Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef7
- Captures5
- Readers5
Article Description
Hydrocracking represents an important process in modern petroleum refining industry, whose performance mainly relies on the identity of catalyst. In this work, we perform a combined thermodynamics and kinetics study on the hydrogenation of naphthalene over a commercialized NiMo/HY catalyst. The reaction network is constructed for the respective production of decalin and methylindane via the intermediate product of tetralin, which could further undergo hydrogenation to butylbenzene, ethylbenzene, xylene, toluene, benzene, methylcyclohexane and cyclohexane. The thermodynamics analysis suggests the optimum operating conditions for the production of monoaromatics are 400 °C, 8.0 MPa, and 4.0 hydrogen/naphthalene ratio. Based on these, the influences of reaction temperature, pressure, hydrogen/naphthalene ratio, and liquid hourly space velocity (LHSV) are investigated to fit the Langmuir-Hinshelwood model. It is found that the higher temperature and pressure while lower LHSV favors monoaromatics production, which is insensitive to the hydrogen/naphthalene ratio. Furthermore, the high consistence between the experimental and simulated data further validates the as-obtained kinetics model on the prediction of catalytic performance over this kind of catalyst.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1004954121000628; http://dx.doi.org/10.1016/j.cjche.2021.02.007; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111614605&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1004954121000628; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7116381&internal_id=7116381&from=elsevier; https://dx.doi.org/10.1016/j.cjche.2021.02.007
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know