MicroED as a powerful technique for the structure determination of complex porous materials
Chinese Journal of Structural Chemistry, ISSN: 0254-5861, Vol: 43, Issue: 3, Page: 100209
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Review Description
Porous materials have garnered significant attention in recent years. Understanding the intrinsic relationship between their structures and properties requires precise knowledge of their atomic structures. Single-crystal X-ray diffraction (SCXRD) has traditionally been the primary method for elucidating such structures, but it demands large, high-quality crystals, often exceeding 5 μm in size. The growth of these crystals can be a time-consuming process, especially for one- and two-dimensional materials. To explore structures at the nanoscale, MicroED (microcrystal electron diffraction (ED)) offers unprecedented insights into the realm of nanomaterials. This revolutionary technique enables researchers to uncover intricate details within nanoscale structures, promising to reshape our fundamental understanding of materials. In this review, we delve into the applications of MicroED in the study of various porous materials, including zeolites, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). We emphasize the pivotal role of MicroED in nanomaterial characterization, enabling precise crystallographic analysis and phase identification.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0254586123004312; http://dx.doi.org/10.1016/j.cjsc.2023.100209; https://linkinghub.elsevier.com/retrieve/pii/S0254586123004312; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7705217&internal_id=7705217&from=elsevier; https://dx.doi.org/10.1016/j.cjsc.2023.100209
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know