Assessment of thermochemical technologies for wastewater sludge-to-energy: An advance MCDM model
Cleaner Engineering and Technology, ISSN: 2666-7908, Vol: 9, Page: 100519
2022
- 19Citations
- 83Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the recent past the tremendous growth of populace, industrial development, and urbanization adds to the inevitable production of wastewater sludge (WWS), needing more sludge disposal and renewable energy generation technologies. The thermochemical technologies namely combustion/or incineration, pyrolysis, and gasification have a great prospect of energy recovery with the possibility to be feasible when considering costs and efficiencies. This research paper seeks an investigation on the selection of the finest or feasible thermochemical conversion technology to treat, dispose and generate gas energy in turn heat and electric power. This can be achieved through an advance multi-criteria decision making (MCDM) model using analytical hierarchy process (AHP) and the technique for order of preference by similarity to ideal solution (TOPSIS) to form a AHP-TOPSIS focused on technical and economic criteria. Results show that combustion or/incineration is the most viable technology due to its ability to lessens enormous sludge volume, recuperate energy, demolish pollutants. Gasification is favourable due to benefits such as high efficiency, continual volumetrically heating, and fast thermal reaction. With regards to pyrolysis conversion technology, this process is regarded among of the most feasible thermochemical technologies with zero-waste production, it can gas recover energy and materials such as biogas, biochar, water, tar, etc. With the aforesaid advance thermochemical technologies, the sludge treatment and energy conversion difficulties are foreseen to be limited or lessened.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2666790822001240; http://dx.doi.org/10.1016/j.clet.2022.100519; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131932313&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2666790822001240; https://dx.doi.org/10.1016/j.clet.2022.100519
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know