On the global interpolation of motion
Computer Methods in Applied Mechanics and Engineering, ISSN: 0045-7825, Vol: 337, Page: 352-386
2018
- 24Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Interpolation of motion is required in various fields of engineering such as computer animation and vision, trajectory planning for robotics, optimal control of dynamical systems, or finite element analysis. While interpolation techniques in the Euclidean space are well established, general approaches to interpolation on manifolds remain elusive. Interpolation schemes in the Euclidean space can be recast as minimization problems for weighted distance metrics. This observation allows the straightforward generalization of interpolation in the Euclidean space to interpolation on manifolds, provided that a metric of the manifold is defined. This paper proposes four metrics of the motion manifold: the matrix, quaternion, vector, and geodesic metrics. For each of these metrics, the corresponding interpolation schemes are derived and their advantages and drawbacks are discussed. It is shown that many existing interpolation schemes for rotation and motion can be derived from the minimization framework proposed here. The problems of averaging of rotation and motion can be treated easily within the same framework. Both local and global interpolation problems are addressed. The proposed interpolation framework can be used with any suitable set of basis functions. Examples are presented with Chebyshev spectral, Fourier spectral, and B-spline basis functions. This paper also introduces one additional approach to the interpolation of motion based on the interpolation of its derivatives. While this approach provides high accuracy, the associated computational cost is high and the approach cannot be used in multi-variable interpolation easily.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045782518301725; http://dx.doi.org/10.1016/j.cma.2018.04.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85045666791&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0045782518301725; https://api.elsevier.com/content/article/PII:S0045782518301725?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0045782518301725?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.cma.2018.04.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know