Numerical method for solution of pointwise contact between surfaces
Computer Methods in Applied Mechanics and Engineering, ISSN: 0045-7825, Vol: 365, Page: 112971
2020
- 17Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
When computing pointwise contact between bodies in a numerical model, one has to define a gap quantity. This is evaluated along the model evolution to quantify contact contributions. In this context, the evaluation of the gap for a fixed configuration of the system is here denoted as the local contact problem (LCP). Present work discusses the LCP in the context of the master–master contact formulation between surfaces, which yields the solution of a four-variable set of nonlinear equations. We present and solve the LCP employing trust-region optimization methods, leading to a robust and general scheme. After, the developed method is applied for several examples of contact involving surface parameterizations, such as super-elliptical extruded surfaces in the context of beam-to-beam contact, arc-based extruded and revolved surfaces and NURBS surfaces for rigid body contact modeling. Applications are quite general, such as pointwise contact involving finite elements and contact between particles addressed by the discrete element method. The main contribution of present work is the discussion, characterization and a proposal for solution algorithm of the LCP in the context of the master–master contact between surfaces. This is fundamental for a successful use of master–master contact schemes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045782520301547; http://dx.doi.org/10.1016/j.cma.2020.112971; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85082172424&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0045782520301547; https://dx.doi.org/10.1016/j.cma.2020.112971
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know