Bayesian reinforcement learning reliability analysis
Computer Methods in Applied Mechanics and Engineering, ISSN: 0045-7825, Vol: 424, Page: 116902
2024
- 6Citations
- 17Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Findings from Southeast University Yields New Data on Applied Mechanics and Engineering (Bayesian Reinforcement Learning Reliability Analysis)
2024 MAY 17 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Investigators publish new report on Engineering - Applied Mechanics
Article Description
A Bayesian reinforcement learning reliability method that combines Bayesian inference for the failure probability estimation and reinforcement learning-guided sequential experimental design is proposed. The reliability-oriented sequential experimental design is framed as a finite-horizon Markov decision process (MDP), with the associated utility function defined by a measure of epistemic uncertainty about Kriging-estimated failure probability, referred to as integrated probability of misclassification (IPM). On this basis, a one-step Bayes optimal learning function termed integrated probability of misclassification reduction (IPMR), along with a compatible convergence criterion, is defined. Three effective strategies are implemented to accelerate IPMR-informed sequential experimental design: (i) Analytical derivation of the inner expectation in IPMR, simplifying it to a single expectation. (ii) Substitution of IPMR with its upper bound IPMRU to avoid element-wise computation of its integrand. (iii) Rational pruning of both quadrature set and candidate pool in IPMRU to alleviate computer memory constraint. The efficacy of the proposed approach is demonstrated on two benchmark examples and two numerical examples. Results indicate that IPMRU facilitates a much more rapid reduction of IPM compared to other existing learning functions, while requiring much less computational time than IPMR itself. Therefore, the proposed reliability method offers a substantial advantage in both computational efficiency and accuracy, especially in complex dynamic reliability problems.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0045782524001580; http://dx.doi.org/10.1016/j.cma.2024.116902; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85187206497&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0045782524001580; https://dx.doi.org/10.1016/j.cma.2024.116902
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know