Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals
Cell Metabolism, ISSN: 1550-4131, Vol: 24, Issue: 3, Page: 420-433
2016
- 82Citations
- 113Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations82
- Citation Indexes81
- 81
- CrossRef63
- Patent Family Citations1
- Patent Families1
- Captures113
- Readers113
- 113
- Mentions1
- Blog Mentions1
- Blog1
Most Recent Blog
Study shows that fat cells which amplify nerve signals in response to cold also affect blood sugar.
When exposed to cold, clusters of cells within the body’s white fat become beige, a colour change which reflects the creation of more energy-producing mitochondria, cellular components that enable cells to burn calories and give off heat. However, as white fat cells have very few nerves, it is still unclear how beige fat cells get the message that it’s cold
Article Description
“Beige” adipocytes reside in white adipose tissue (WAT) and dissipate energy as heat. Several studies have shown that cold temperature can activate pro-opiomelanocortin-expressing (POMC) neurons and increase sympathetic neuronal tone to regulate WAT beiging. WAT, however, is traditionally known to be sparsely innervated. Details regarding the neuronal innervation and, more importantly, the propagation of the signal within the population of “beige” adipocytes are sparse. Here, we demonstrate that beige adipocytes display an increased cell-to-cell coupling via connexin 43 (Cx43) gap junction channels. Blocking of Cx43 channels by 18α-glycyrrhetinic acid decreases POMC-activation-induced adipose tissue beiging. Adipocyte-specific deletion of Cx43 reduces WAT beiging to a level similar to that observed in denervated fat pads. In contrast, overexpression of Cx43 is sufficient to promote beiging even with mild cold stimuli. These data reveal the importance of cell-to-cell communication, effective in cold-induced WAT beiging, for the propagation of limited neuronal inputs in adipose tissue.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1550413116304211; http://dx.doi.org/10.1016/j.cmet.2016.08.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84990852365&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/27626200; https://linkinghub.elsevier.com/retrieve/pii/S1550413116304211
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know