PlumX Metrics
Embed PlumX Metrics

Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: the multicentre ORCHESTRA cohort

Clinical Microbiology and Infection, ISSN: 1198-743X, Vol: 29, Issue: 8, Page: 1084.e1-1084.e7
2023
  • 5
    Citations
  • 0
    Usage
  • 34
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021–January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t 0 ), second dose (t 1 ), 3 ± 1 month (t 2 ), and 1 month after third dose (t 3 ). Negative AbR at t 3 was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t 0 to t 3. Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36–0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35–0.37]). Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms.

Bibliographic Details

Maddalena Giannella; Pierluigi Viale; Lorenzo Marconi; Manuel Huth; Jan Hasenauer; Work Package; Elda Righi; Evelina Tacconelli; Maria Mongardi; Angelina Konnova; Akshita Gupta; An Hotterbeekx; Matilda Berkell; Samir Kumar-Singh; Zaira R. Palacios-Baena; Jes s.Rodr guez Baño; Maria Cristina Morelli; Mariarosa Tamè; Marco Busutti; Luciano Potena; Elena Salvaterra; Giuseppe Feltrin; Gino Gerosa; Lucrezia Furian; Erica Nuzzolese; Marianna Di Bello; Caterina Di Bella; Patrizia Burra; Debora Bizzarro; Francesco Paolo Russo; Salvatore Piano; Paolo Angeli; Alessandra Brocca; Nicola Zeni; Roberta Gagliardi; Simone Incicco; Umberto Cillo; Enrico Gringeri; Patrizia Boccagni; Francesco Enrico D'amico; Riccardo Boetto; Lara Borsetto; Mara Cananzi; Monica Loy; Gianluigi Zaza; Simona Granata; Francesco Onorati; Livio San Biagio; Alessandra Francica; Ilaria Tropea; Amedeo Carraro; Alex Borin; Fiorella Gastaldon; Carlotta Caprara; Grazia Maria Virz; Matteo Marcello; Maurizio Nordio; Tiziana Lazzarotto; Natascia Caroccia; Beatrice Tazza; Cecilia Bonazzetti; Francesca Fan; Michela Di Chiara; Maria Eugenia Giacomini; Oana Vatamanu; Zeno Pasquini; Renato Pascale; Matteo Rinaldi; Clara Solera Horna; Caterina Campoli; Giacomo Fornaro; Fabio Trapani; Luciano Attard; Antonio Gramegna; Valeria Cesari; Simona Varani; Elena Rosselli Del Turco; Sara Tedeschi; Kristian Scolz; Gaetano La Manna; Valeria Grandinetti; Marcello Demetri; Simona Barbuto; Chiara Abenavoli; Giovanni Vitale; Laura Turco; Matteo Ravaioli; Matteo Cescon; Valentina Bertuzzo; Angela Lombardi; Alessandra Trombi; Marco Masetti; Paola Prestinenzi; Mario Sabatino; Laura Giovannini; Aloisio Alessio; Antonio Russo; Maria Francesca Scuppa; Laura Borgese; Giampiero Dolci; Gianmaria Paganelli; Giorgia Comai; Liliana Gabrielli; Chiara Gamberini; Marta Leone; Alberto Verlato; Rossella Elia; Lorena Brunello; Marta Tenan; Monica Rizzolo; Mariana Nunes Pinho Guedes; Gaia Maccarone; Concetta Sciammarella; Massimo Mirandola; Lorenzo Maria Canziani; Chiara Konishi; Chiara Perlini; Giulia Rosini; Luigi Garufi; Chiara Tessari; Francesca Russo; Michele Mongillo; David Gutiérrez-Campos; Ana Belén Mart n-Gutiérrez; Ana Silva; Virginia Palomo; Almudena Serna; Marta Fernández-Regaña; Maria Giulia Caponcello; Natalia Maldonado; Paula Olivares; Ana Belén Hidalgo; Ioana Hrom; Myriam Adorna; Rubén Murillo; Ma Isabel Garc a-Sánchez; Andrea Carraro; Josè Igeno San Miguel; Emanuele Vianello; Susanna Negrisolo; Paola Gaio

Elsevier BV

Medicine

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know