Mathematical models of fibrin polymerization: past, present, and future
Current Opinion in Biomedical Engineering, ISSN: 2468-4511, Vol: 20, Page: 100350
2021
- 10Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Blood clotting is a complex biochemical and biophysical process that leads to the formation of a stabilizing fibrin mesh. Fibrin polymerization is a necessary, multi-stage component of this process and occurs on multiple temporal and spatial scales. These complexities make it difficult to predict how polymerization is affected by perturbations or under varying conditions. Mathematical modeling has been a fruitful approach in generating and testing novel hypotheses about this process. In this review, we focus on the historical context leading to current mathematical models of fibrin polymerization and discuss the contributions of biochemical interactions between thrombin, fibrin(ogen), and factor XIII. We highlight mathematical models that encompass multiple spatial and temporal scales (coarse-grain models, kinetic models, and models incorporating flow and transport effects). We also discuss the unique sets of challenges and benefits of each of these models, and finally, we suggest directions for future focus.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2468451121000908; http://dx.doi.org/10.1016/j.cobme.2021.100350; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122816338&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2468451121000908; https://dx.doi.org/10.1016/j.cobme.2021.100350
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know