Toward a quantitative theory of Hofmeister phenomena: From quantum effects to thermodynamics
Current Opinion in Colloid & Interface Science, ISSN: 1359-0294, Vol: 23, Page: 110-118
2016
- 57Citations
- 50Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Several recent developments have enhanced our understanding of specific ion hydration. These advances have included the Law of Matching Water Affinities and the realization that many-body dispersion forces and polarization can play important roles in ion specificity. Efforts have been made to partition the relevant ion free energies into their physically contributing parts in order to gain further insights into the driving forces. Yet a quantitative theory of ion specificity that links the necessary molecular-level treatment of the inner hydration shell with the many-body response of Lifshitz theory at longer range is still lacking. This review summarizes some steps toward quantitative models of specific ion hydration and discusses a possible path looking forward.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359029416300735; http://dx.doi.org/10.1016/j.cocis.2016.06.015; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84979934276&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359029416300735; https://dx.doi.org/10.1016/j.cocis.2016.06.015
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know