Effect of silica nanoparticles on the interfacial properties of a canonical lipid mixture
Colloids and Surfaces B: Biointerfaces, ISSN: 0927-7765, Vol: 136, Page: 971-980
2015
- 37Citations
- 37Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations37
- Citation Indexes37
- 37
- CrossRef20
- Captures37
- Readers37
- 37
Article Description
The incorporation of silica nanoparticles (NPs) from the subphase into Langmuir lipid monolayers formed by three components, 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and Cholesterol (Chol), modifies the thermodynamic and rheological behavior, as well as the structure of the pristine lipid film. Thus, the combination of structural characterization techniques, such as Brewster Angle Microscopy (BAM) and Atomic Force Microscopy (AFM), with interfacial thermodynamic and dilational rheology studies has allowed us to deepen on the physico-chemical bases governing the interaction between lipid molecules and NPs. The penetration of NPs driven by the interaction (electrostatic or hydrogen bonds) with the polar groups of the lipid molecules affects the phase behaviour (surface pressure-area, П − A, isotherm) of the monolayer. This can be easily rationalized considering the modification of the packing and cohesion of the molecules at the interface as revealed BAM and AFM images. Furthermore, oscillatory barrier experiments have allowed obtaining information related to the effect of NPs on the monolayer response under dynamic conditions that presents a critical impact on the characterization of biological relevant systems because most of the processes of interest for these systems present a dynamic character.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0927776515302848; http://dx.doi.org/10.1016/j.colsurfb.2015.11.001; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84946545810&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/26562189; https://linkinghub.elsevier.com/retrieve/pii/S0927776515302848; https://dx.doi.org/10.1016/j.colsurfb.2015.11.001
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know