From reversible to irreversible: When the membrane nanotube pearling is coupled with phase separation
Colloids and Surfaces B: Biointerfaces, ISSN: 0927-7765, Vol: 209, Issue: Pt 1, Page: 112160
2022
- 2Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Membrane nanotubes, which are ubiquitous in biology and act as channels maintaining transport between different cells and organelles, readily undergo pearling in response to external stimuli. Membrane nanotube pearling involves generation of heterogeneous curvature coupled with redistribution of membrane components that may interfere with the shape recovery of pearled nanotubes. However, the mechanism underlying such delicate process remains unclear and difficult to study at the molecular scale in vivo. By means of molecular dynamics simulation, here we investigate pearling of multi-component membrane nanotubes and reversibility through manipulating system temperature and osmotic pressure. With the equilibrium shape of membrane nanotubes controlled by the osmotic pressure, our results demonstrate that the process of membrane nanotube pearling can be reversible or irreversible, depending on the phase segregation state. For the pearled nanotube releasing high surface energy, different lipid components redistribute along the tube axial direction. Lipids with unsaturated tails prefer gathering at the high-curvature shrinking region, whereas the swelling region is constituted by saturated lipids forming the liquid-ordered phase of a higher bending rigidity. Such curvature sensitive phase segregation minimizes the system free energy by reducing both the membrane bending energy and line tension at the phase boundary. As such, the pearled nanotube fails to recover its shape upon retracting stimuli, suggesting irreversibility of the membrane nanotube pearling coupled with phase separation. Given importance of membrane nanotube pearling in various cellular activities, these results provide a new mechanism of controlling equilibrium shapes of membrane nanotubes in complex cellular environment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0927776521006044; http://dx.doi.org/10.1016/j.colsurfb.2021.112160; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118281366&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34736219; https://linkinghub.elsevier.com/retrieve/pii/S0927776521006044; https://dx.doi.org/10.1016/j.colsurfb.2021.112160
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know