PlumX Metrics
Embed PlumX Metrics

Folic acid-mediated enhancement of the diagnostic potential of luminescent europium-doped hydroxyapatite nanocrystals for cancer biomaging

Colloids and Surfaces B: Biointerfaces, ISSN: 0927-7765, Vol: 239, Page: 113975
2024
  • 1
    Citations
  • 0
    Usage
  • 7
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.

Bibliographic Details

Quindoza, Gerardo Martin; Horimoto, Rui; Nakagawa, Yasuhiro; Aida, Yuta; Irawan, Vincent; Norimatsu, Jumpei; Mizuno, Hayato Laurence; Anraku, Yasutaka; Ikoma, Toshiyuki

Elsevier BV

Biochemistry, Genetics and Molecular Biology; Physics and Astronomy; Chemistry; Chemical Engineering

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know