Thermal oxidation, ignition, and combustion characterization of AP-, LP-, and KN- coated multi-metal composite powders in Air/H 2 O environments
Combustion and Flame, ISSN: 0010-2180, Vol: 271, Page: 113808
2025
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Studying the ignition and combustion performances of modified aluminum-based metallic fuels in variable oxidizing atmospheres is highly important for large-scale space exploration. In this study, Al–B–Mg multi-metal composite powders (MMP) were prepared using the mechanical ball-milling method.It was coated respectively by ammonium perchlorate (AP), lithium perchlorate (LP), and potassium nitrate (KN) to obtain modified multi-metal composite powder fuels (AP@MMP, LP@MMP, and KN@MMP, respectively) by a recrystallization method. The samples were characterized and their thermal oxidation, ignition and combustion processes were investigated through a TG and laser-ignition experiment under Air/H 2 O environments. The results show that the MMP samples can potentially be called pure aluminum substitutes. All three samples exhibit fast ignition characteristics with ignition delay times of 2.95–6.75 ms in air. AP@MMP exhibits the highest ignition speed. The thermal oxidation, ignition, and combustion properties of all samples decayed with increasing water content in the atmosphere (Air→Air+H 2 O→H 2 O). AP@MMP exhibits a significantly more intense and stable combustion overall than LP@MMP and KN@MMP. This study expands the direction and application range of aluminum-based composite metal fuels, guiding their applications in Air/H 2 O environments.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0010218024005170; http://dx.doi.org/10.1016/j.combustflame.2024.113808; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85207888829&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0010218024005170; https://dx.doi.org/10.1016/j.combustflame.2024.113808
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know