PlumX Metrics
Embed PlumX Metrics

Development of a microstructural grand potential-based sintering model

Computational Materials Science, ISSN: 0927-0256, Vol: 172, Page: 109288
2020
  • 40
    Citations
  • 0
    Usage
  • 62
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    40
    • Citation Indexes
      40
  • Captures
    62

Article Description

Microstructure is a controlling factor in the behavior of sintered materials. This work presents a quantitative phase field model of thermal sintering that predicts the evolution of the microstructure by capturing the sintering stress, GB/vacancy interactions, non-uniform diffusion, and grain coarsening without introducing a separate rigid body motion term. The model provides a mechanistic description of sintering using the grand potential phase field approach. Small test simulations are used to verify the new model against sintering theory, and they show that 3D simulations predict faster densification and coarsening than 2D simulations. 3D simulations are compared against experimental data available in the literature. The results of this comparison show that the model provides a reasonable estimate of the sintering behavior, though it overpredicts the sintering rate. This may be due to uncertainty in the material parameters and the relatively small scale of the simulation.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know