Temperature effect on irradiation damage in equiatomic multi-component alloys
Computational Materials Science, ISSN: 0927-0256, Vol: 197, Page: 110571
2021
- 9Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multiprincipally designed concentrated solid solution alloys, such as high entropy alloys (HEA) and equiatomic multi-component alloys (EAMC-alloys) have shown much promise for use as structural components in future nuclear energy production concepts. The irradiation tolerance in these novel alloys has been shown to be superior to that in more conventional metals used in current nuclear reactors. However, studies involving irradiation of HEAs and EAMC-alloys have usually been performed at room temperature. Hence, in this study the irradiation damage is investigated computationally in two different Ni-based EAMC-alloys and pure Ni at four different temperatures, ranging from 138 K to 800 K. The irradiation damage was studied by analyzing point defects, defect cluster sizes and dislocation networks in the materials. Dislocation loop mobility calculations were performed to help understanding the formation of different dislocation networks in the irradiated materials. Utilizing the knowledge of the depth distribution of damage, and using simulations of Rutherford backscattering in channeling conditions (RBS/c), we can relate our results to experimental data. The main findings are that the alloys have superior irradiation tolerance at all temperatures as compared to pure Ni, and that the damage is reduced in all materials with an increase in temperature.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0927025621002986; http://dx.doi.org/10.1016/j.commatsci.2021.110571; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107052402&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0927025621002986; https://dx.doi.org/10.1016/j.commatsci.2021.110571
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know