Development of a physically-informed neural network interatomic potential for tantalum
Computational Materials Science, ISSN: 0927-0256, Vol: 205, Page: 111180
2022
- 13Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Large-scale atomistic simulations of materials heavily rely on interatomic potentials, which predict the system energy and atomic forces. One of the recent developments in the field is constructing interatomic potentials by machine-learning (ML) methods. ML potentials predict the energy and forces by numerical interpolation using a large reference database generated by quantum-mechanical calculations. While high accuracy of interpolation can be achieved, extrapolation to unknown atomic environments is unpredictable. The recently proposed physically-informed neural network (PINN) model improves the transferability by combining a neural network regression with a physics-based bond-order interatomic potential. Here, we demonstrate that general-purpose PINN potentials can be developed for body-centered cubic (BCC) metals. The proposed PINN potential for tantalum reproduces the reference energies within 2.8 meV/atom. It accurately predicts a broad spectrum of physical properties of Ta, including (but not limited to) lattice dynamics, thermal expansion, energies of point and extended defects, the dislocation core structure and the Peierls barrier, the melting temperature, the structure of liquid Ta, and the liquid surface tension. The potential enables large-scale simulations of physical and mechanical behavior of Ta with nearly first-principles accuracy while being orders of magnitude faster. This approach can be readily extended to other BCC metals.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0927025621008338; http://dx.doi.org/10.1016/j.commatsci.2021.111180; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85123218006&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0927025621008338; https://dx.doi.org/10.1016/j.commatsci.2021.111180
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know